Comprehending concussion: evolving and expanding our clinical insight

Michael Makdissi,1,2,3 Jon Patricios4,5,6

Concussion in sport has been defined as a ‘complex pathophysiological process affecting the brain, induced by biomechanical factors.’ The condition is characterised by “a graded set of clinical symptoms that may or may not involve loss of consciousness.”

CASTING THE NET WIDE
The current consensus definition provides a broad clinicopathological description of concussion. It encompasses the wide range of clinical presentations that result from traumatic forces transmitted to the brain. In its most literal interpretation, any post-traumatic symptom or sign fits the definition of concussion. Consequently, the current definition has high sensitivity, but lacks specificity. This issue has been highlighted in recent papers.

The purpose of ‘casting a large net’ is to capture all possible concussions and manage these injuries conservatively. This position is driven by the lack of reliable and specific diagnostic markers, and concerns related to potential complications associated with concussion. Compounding this, risk factors for complications remain unclear and currently there are few prognostic factors to accurately predict outcomes following concussion.

ATHLETES DO NOT LIKE SITTING OUT
From the athletes’ perspective, a significant downside to the broad definition of concussion is the major time loss implication as the player is withheld until fully recovered. This may adversely affect compliance and the willingness to report.

Symptoms. In others, it may heighten anxiety regarding risks of potential long-term adverse outcomes (such as mental and cognitive health issues), particularly on retirement from sport.

DOES PATHOPHYSIOLOGY DETERMINE OUTCOMES?
At present, it is unclear as to why some athletes develop problems following concussion and others do not. It is likely that there is a range of intrinsic and extrinsic risk factors, beyond the trauma itself.

As we continue to advance our thinking, it is important to take a broader view of concussion and try to understand the pathophysiological mechanisms that underlie various clinical presentations. This may help us identify different subtypes of concussion and/or provide important prognostic information to help identify injuries associated with a higher risk of complications.

Studies using animal models of head trauma have provided an insight into the potential pathophysiological mechanisms of concussion. Some of the changes identified include alterations in neurotransmission, ionic shifts, metabolic changes, alterations in blood flow and vascular reactivity, as well as microstructural damage. Results from human studies using advanced neuroimaging techniques, such as MR spectroscopy and diffusion tensor imaging, demonstrate similar changes following concussion.

It is possible that varying pathophysiological mechanisms underpin different clinical presentations and result in diverse clinical courses. We need to move from simply thinking of concussion as a single diagnostic entity to trying to differentiate the injury based on presentation, clinical course and possible underlying pathophysiological mechanisms. Ideally, we would also like to be able to differentiate clinical features that may be attributable to other causes, such as injury to the cervical spine, vestibular dysfunction, post-traumatic migraine, etc.

CURRENT CLINICAL INADEQUACIES
The problem with current assessment tools (such as the SCAT3) is that they rely heavily on assessment in a limited number of domains. Currently this assessment is biased towards commonly reported symptoms (in somatic, cognitive and psychological or behavioural/emotional domains), balance disturbance and changes in cognitive functions (eg, confusion, memory disturbance). Recently, there has been an increased emphasis on broadening the assessment, for example, to include tests of vestibular function, visual pathways, etc.

There is also ongoing interest in new technologies, such as biomarkers, impact sensors, quantitative EEGs, etc, to facilitate a diagnosis of concussion. In time, these technologies may also facilitate a greater understanding of the underlying pathophysiology of different concussion presentations. A risk, however, is that they further increase the sensitivity of the process, ‘widening the net’ even further.

A ROLE FOR TRANSCRANIAL DOPPLER ULTRASOUND?
The recent systematic review by Gardner et al, investigates the use of transcranial Doppler ultrasound in the assessment and monitoring of cerebral blood flow following concussion in sports. Although, only three studies on a small number of athletes were included in the analysis, the results draw attention to the potential role of autonomic changes in the development and maintenance of post-traumatic symptoms.

Physiological stress, such as exercise, has long been recognised to exacerbate symptoms following a concussion. The pathophysiological mechanism underlying this phenomenon remains unclear. It is possible that altered vascular reactivity may be a contributing factor. It is also possible that vascular changes may account for the persistence of symptoms in some cases, as is the case with conditions such as migraines. There is also a theory that disordered vascular autoregulation is the mechanism for acute cerebral oedema observed in rare cases following concussion in children and adolescents. Hence, vascular reactivity may be important in terms of acute assessment and determination of recovery from injury, or for the identification of a subgroup of concussions that may be at higher risk in the short term.

Transcranial Doppler ultrasound may prove to be another technology that facilitates assessment and further understanding of postconcussion symptoms.

MORE TOOLS AT OUR DISPOSAL
Continuing to improve the scope of the assessment will potentially help identify different ‘subtypes’ of injury, which demand different management protocols.
Moreover, it will help identify factors that may be contributing to prolonged symptoms in some patients. The long-term aim is to be able to provide accurate diagnosis and prognosis to patients who suffer from concussion. This will facilitate appropriate management and provide opportunities for more targeted interventions.

Contributors MM and JP contributed to the content, design and drafting of the paper. MM conceived the outline and themes of the paper, submitted the paper and acts as guarantor.

Competing interests None.

Provenance and peer review Not commissioned; internally peer reviewed.

Comprehending concussion: evolving and expanding our clinical insight

Michael Makdissi and Jon Patricios

doi: 10.1136/bjsports-2014-094454

Updated information and services can be found at:
http://bjsm.bmj.com/content/49/16/1029

These include:

References
This article cites 9 articles, 4 of which you can access for free at:
http://bjsm.bmj.com/content/49/16/1029#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/